Handbook SC16 1994 Update Wideband Hybrid IC Modules

These update notes are issued to correct errors occurring in handbook SC16, and to provide additional characteristics tables for BGY785A.

PAGE	TYPE NUMBER	ACTION		
43	BGD108	The CECC logo is missing from the title at top of page.		
62 to 65	BGD602D	This is a PRODUCT not a PRELIMINARY specification.		
85	BGE885	Refer to the figure and table on page 91 for test circuit details.		
95	BGY60	This product is withdrawn.		
164 and 165	BGY685AD	This is a PRODUCT not an OBJECTIVE specification.		
176	BGY785A	See the additional characteristics tables on pages 2, 3 and 4 of these notes.		

Supplementary sheets to Handbook SC16

May 1994

Philips Semiconductors

PHILIPS

CATV amplifier module

BGY785A

CHARACTERISTICS

Bandwidth 40 to 600 MHz; $T_{case} = 30$ °C; $Z_{S} = Z_{L} = 75 \Omega$.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
G _P	power gain	f = 50 MHz	18	19	dB
F.,		f = 600 MHz	18.5	_	dB
SL	slope cable equivalent	f = 40 to 600 MHz	0	1.5	dB
FL	flatness of frequency response	f = 40 to 600 MHz	-	±0.3	dB
S ₁₁	input return losses	f = 40 to 80 MHz	20	_	dB
		f = 80 to 160 MHz	18.5		dB
		f = 160 to 320 MHz	17	-	dB
		f = 320 to 600 MHz	16	_	dB
S ₂₂	output return losses	f = 40 to 80 MHz	20]-	dB
		f = 80 to 160 MHz	18.5	-	dB
·		f = 160 to 320 MHz	17	-	dB
	^.	f = 320 to 600 MHz	16	_	dB
СТВ	composite triple beat	85 chs flat; V _o = 44 dBmV; measured at 595.25 MHz	_	-57	dB
X _{mod}	cross modulation	85 chs flat; V _o = 44 dBmV; measured at 55.25 MHz	_	-59	dB
cso	composite second order distortion	85 chs flat; V _e = 44 dBmV; measured at 596.5 MHz	-	-58	dB
d ₂	second order distortion	note 1	—	-70	d₿
V _o	output voltage	d _{im} = -60 dB; note 2	61	-	dBmV
F	noise figure	f = 50 MHz	-	5.5	dB
		f = 600 MHz		7.5	dB
I _{tot}	total current consumption	DC value; V _B = 24 V; note 3		235	mA

Notes

- $\begin{array}{ll} \text{1.} & \text{f}_{\text{p}} = 55.25 \text{ MHz; V}_{\text{p}} = 44 \text{ dBmV;} \\ & \text{f}_{\text{q}} = 541.25 \text{ MHz; V}_{\text{q}} = 44 \text{ dBmV;} \\ & \text{measured at f}_{\text{p}} + \text{f}_{\text{q}} = 596.5 \text{ MHz.} \end{array}$
- 2. $f_p = 590.25 \text{ MHz}$; $V_p = V_o$; $f_q = 597.25 \text{ MHz}$; $V_q = V_o 6 \text{ dB}$; $f_r = 599.25 \text{ MHz}$; $V_r = V_o 6 \text{ dB}$; measured at $f_p + f_q f_r = 588.25 \text{ MHz}$.
- 3. The module normally operates at $V_B = +24 \text{ V}$, but is able to withstand supply transients up to +30 V.

CATV amplifier module

BGY785A

CHARACTERISTICS

Bandwidth 40 to 550 MHz; T_{case} = 30 °C; Z_{S} = Z_{L} = 75 Ω .

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
G _P	power gain	f = 50 MHz	18	19	dB
		f = 550 MHz	18.5	-	dB
SL	slope cable equivalent	f = 40 to 550 MHz	0	1.5	dB
FL	flatness of frequency response	f = 40 to 550 MHz	-	±0.3	dB
S ₁₁	input return losses	f = 40 to 80 MHz	20	T-	dB
		f = 80 to 160 MHz	18.5	-	dB
		f = 160 to 320 MHz	17	-	dB
		f = 320 to 550 MHz	16	_	dB
S ₂₂	output return losses	f = 40 to 80 MHz	20	-	dB
		f = 80 to 160 MHz	18.5	-	dB
		f = 160 to 320 MHz	17	_	dB
		f = 320 to 550 MHz	16	_	dB
СТВ	composite triple beat	77 chs flat; V _o = 44 dBmV; measured at 547.25 MHz	-	-60	dB
X _{mod}	cross modulation	77 chs flat; V _o = 44 dBmV; measured at 55.25 MHz	-	-60	dB
CSO	composite second order distortion	77 chs flat; V _o = 44 dBmV; measured at 548.5 MHz	-	-60	dB
d ₂	second order distortion	note 1	-	-72	dB
Vo	output voltage	d _{im} = -60 dB; note 2	62	_	dBmV
F	noise figure	f = 50 MHz	-	5.5	dB
		f = 550 MHz		7	dB
I _{tot}	total current consumption	DC value; V _B = 24 V; note 3	_	235	mA

Notes

- $\begin{array}{ll} \text{1.} & \text{f}_p = 55.25 \text{ MHz; V}_p = 44 \text{ dBmV;} \\ & \text{f}_q = 493.25 \text{ MHz; V}_q = 44 \text{ dBmV;} \\ & \text{measured at f}_p + \text{f}_q = 548.5 \text{ MHz.} \end{array}$
- $\begin{array}{ll} \text{2.} & f_p = 540.25 \text{ MHz; } V_p = V_o; \\ f_q = 547.25 \text{ MHz; } V_q = V_o 6\text{dB;} \\ f_r = 549.25 \text{ MHz; } V_r = V_o 6\text{ dB;} \\ \text{measured at } f_p + f_q f_r = 538.25 \text{ MHz.} \end{array}$
- 3. The module normally operates at $V_B = +24 \text{ V}$, but is able to withstand supply transients up to +30 V.

CATV amplifier module

BGY785A

CHARACTERISTICS

Bandwidth 40 to 450 MHz; $T_{case} = 30$ °C; $Z_S = Z_L = 75 \Omega$.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
G _P	power gain	f = 50 MHz	18	19	dB
		f = 450 MHz	18.5	-	dB
SL	slope cable equivalent	f = 40 to 450 MHz	0.0	1.5	dB
FL	flatness of frequency response	f = 40 to 450 MHz	-	±0.3	dB
S ₁₁	input return losses	f = 40 to 80 MHz	20	-	dB
e e e		f= 80 to 160 MHz	18.5	-	dB
		f = 160 to 320 MHz	17	_	dB
		f = 320 to 450 MHz	16	_	dB
S ₂₂	output return losses	f = 40 to 80 MHz	20	_	dB
		f= 80 to 160 MHz	18.5	-	dB
		f = 160 to 320 MHz	17	-	dB
		f = 320 to 450 MHz	16	_	dB
СТВ	composite triple beat	60 chs flat; V _o = 46 dBmV; measured at 445.25 MHz	-	-61	dB
X _{mod}	cross modulation	60 chs flat; V _o = 46 dBmV; measured at 55.25 MHz	-	-60	dB
CSO	composite second order distortion	60 chs flat; V _o = 44 dBmV; measured at 446.5 MHz	-	-61	dB
d ₂	second order distortion	note 1	-	-75	dB
V _o	output voltage	d _{im} = -60 dB; note 2	64	_	dBmV
F	noise figure	f = 50 MHz]-	5.5	dB
		f = 450 MHz	_	6.5	dB
I _{tot}	total current consumption	DC value; $V_B = 24 \text{ V}$; note 3		235	mA

Notes

- 1. $f_p = 55.25$ MHz; $V_p = 46$ dBmV; $f_q = 391.25$ MHz; $V_q = 46$ dBmV; measured at $f_p + f_q = 446.5$ MHz.
- $\begin{array}{ll} \text{2.} & \text{f}_{\text{p}} = 440.25 \text{ MHz; } \text{V}_{\text{p}} = \text{V}_{\text{o}}; \\ & \text{f}_{\text{q}} = 447.25 \text{ MHz; } \text{V}_{\text{q}} = \text{V}_{\text{o}} 6 \text{ dB;} \\ & \text{f}_{\text{r}} = 449.25 \text{ MHz; } \text{V}_{\text{r}} = \text{V}_{\text{o}} 6 \text{ dB;} \\ & \text{measured at } \text{f}_{\text{p}} + \text{f}_{\text{q}} \text{f}_{\text{r}} = 438.25 \text{ MHz.} \end{array}$
- 3. The module normally operates at $V_B = +24 \text{ V}$, but is able to withstand supply transients up to +30 V.